
Allocating Workload &
Consistency

Allocating Workload
models:

z 1. processor pool

y processor -> process p for p's lifetime

y sharing at process granularity

y e.g. C compilation, multiple modules

y user workstation maybe just a user interface

(eg X)

Allocating Workload
models:

z 2. NOW (Shoja's Martlet; Paterson's NOW)

y steal cycles from idle workstations

y aided by process migration

 (when the owner of the ws logs in!)

Allocating Workload
models:

z 3. Shared Mp multiprocessors . . .
x each cpu has private cache and

(possibly) private Mp

x all share a single shared Mp in which

programs and data are resident

x shared Mp can be used to implement (emulate)

 message passing

x popular for servers, O(10-100 cpus)

Allocating Workload
models:

and
Maintaining them. . .

Kinds of Consistency
and
Maintaining them. . .

 Update consistency

Update consistency

z means that a series of transactions on a single
data item should not interact

z the effect of each should be independent

of the others

z sufficient condition:
y each should be atomic :

Update consistency

z each should be atomic :

y 1] all of it is done or none of it is done

y 2] the state change should be as though the

 transaction was instantaneous

y

Replication Consistency:

y databases are often not monolithic or

partitioned but replicated

y changes to one copy of the data must be

 "quickly " reflected in all copies

y a sequence of changes (updates) must be

 passed against all copies in the same

time sequence (Lamport)

Cache Consistency

y Cache: when a client receives data from a
server

 it may keep its copy around

in case it needs it again soon.

y such data is cached and the store is a cache.

y origin: hardware cache for instructions,
x interposed between Mp and cpu.

Cache Consistency problem:

y when the original data is changed in the server

how to ensure the cache copy changes too?

y in a cpu with one Mp, writethrough techniques

y in a distributed system with n clients of the data

server, where n varies continually and unpredictably

 NOT CLEAR!

Cache Consistency problem:

z why bother?

z 1000:1 speedups are common

Failure consistency:

x consistent recovery of all processes

 from failure of one process or processor

x requires checkpoint/restart techniques

Clock consistency

z Consistent view of time, or at least of
temporal sequences (A happened before
B)

z there is no common hardware clock

z Lamport, Fidge, . . .

and see . . .

z functionality (emulate unix)

z QOS
y performance

y availability/reliability

y security

z reconfigurability (short & long term)

