Allocating Workload &
Consistency



Allocating Workload
models:

1. processor pool

processor -> process p for p'slifetime
sharing at process granularity

e.g. C compilation, multiple modules

user workstation maybe just a user interface

(eg X)



Allocating Workload
models:

2. NOW (Shoja's Martlet; Paterson's NOW)
steal cycles from idle workstations

aided by process migration
(when the owner of thewslogsin!)



Allocating Workload
models:

3. Shared M p multiprocessors. . .

each cpu has private cache and
(possibly) private Mp

all shareasingle shared Mp inwhich
programs and data are resident

shared Mp can be used to implement (emulate)
message passing

popular for servers, O(10-100 cpus)



Allocating Workload
models:



and
Maintaining them. . .






Kinds of Consistency
and
Maintaining them. . .

Update consistency



Update consistency

means that a series of transactions on asingle
data item should not Interact

the effect of each should be Independent
of the others

sufficient condition:
each should be atomic :



Update consistency

each should be atomic:

1] all of it isdone or none of it is done

2] the state change should be as though the
transaction was 1nstantaneous



Replication Consistency:

databases are often not monolithic or
partitioned but replicated

changes to one copy of the data must be
"quickly " reflected in al copies

a sequence of changes (updates) must be
passed against all copies in the same
time sequence (Lamport )



Cache Consistency

Cache: when a client receives datafrom a
server

It may keep its copy around
IN case It needs it again soon.

such datais cached and the storeisa cache.

origin: hardware cache for instructions,
Interposed between Mp and cpu.



Cache Consistency problem:

when the original datais changed in the server
how to ensure the cache copy changes too?

In acpu with one Mp, writethrough techniques
In adistributed system with n clients of the data

server, where n varies continually and unpredictably
NOT CLEAR!



Cache Consistency problem:

why bother?

1000: 1 speedups are common



Failure consistency:

consistent recovery of all processes
from failure of one process or processor

reguires checkpoint/restart technigues



Clock consistency

Consistent view of time, or at least of

temporal sequences (A happened before
B)

there 1s no common hardware clock

Lamport, Fidge, . . .



and see. ..

functionality (emulate unix)

QOS
performance
availability/reliability
Security

reconfigurability (short & long term)



